A K-theoretic relative index theorem and Callias-type Dirac operators
نویسندگان
چکیده
منابع مشابه
A General Index Theorem for Callias-anghel Operators
We prove a families version of the index theorem for operators generalizing those studied by C. Callias and later by N. Anghel, which are operators on a manifold with boundary having the form D + iΦ, where D is elliptic pseudodifferential with self-adjoint symbols, and Φ is a self-adjoint bundle endomorphism which is invertible at the boundary and commutes with the symbol of D there. The index ...
متن کاملIn quest of a generalized Callias index theorem
We give a prescription for how to compute the Callias index, using as regulator an exponential function. We find agreement with old results in all odd dimensions. We show that the problem of computing the dimension of the moduli space of self-dual strings can be formulated as an index problem in even-dimensional (loop-)space. We think that the regulator used in this Letter can be applied to thi...
متن کاملIndex Theorem for Equivariant Dirac Operators on Non-compact Manifolds
Let D be a (generalized) Dirac operator on a non-compact complete Riemannian manifold M acted on by a compact Lie group G. Let v : M → g = LieG be an equivariant map, such that the corresponding vector field on M does not vanish outside of a compact subset. These data define an element of K-theory of the transversal cotangent bundle to M . Hence, by embedding of M into a compact manifold, one c...
متن کاملAn approximate Dirac-type theorem for k -uniform hypergraphs
A k-uniform hypergraph is hamiltonian if for some cyclic ordering of its vertex set, every k consecutive vertices form an edge. In 1952 Dirac proved that if the minimum degree in an n-vertex graph is at least n/2 then the graph is hamiltonian. We prove an approximate version of an analogous result for uniform hypergraphs: For every k ≥ 3 and γ > 0, and for all n large enough, a sufficient condi...
متن کاملCollapsing and Dirac-type Operators
We analyze the limit of the spectrum of a geometric Dirac-type operator under a collapse with bounded diameter and bounded sectional curvature. In the case of a smooth limit space B, we show that the limit of the spectrum is given by the spectrum of a certain first-order differential operator on B, which can be constructed using superconnections. In the case of a general limit space X , we expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 1995
ISSN: 0025-5831,1432-1807
DOI: 10.1007/bf01460989